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1. Introduction

Fox (2007) introduces an elegant notion, which he dubs Innocent Exclusion, to state the
semantics of exhaustive operators. In later work, Fox (2009) claims that an exhaustive
operator stated in terms of Innocent Exclusion will never fall into inconsistency; he calls
it ‘contradiction free.” In this squib | observe that there are cases in which Innocent
Exclusion leads to contradiction. The cases are those studied by Fox & Hackl (2006).

Fox & Hackl (2006) (F&H) observe that a sentence like (1)a does not give rise to the
scalar expected implicature that it is not the case that five students smoke. They
account for this by arguing that the measurement domain, which contains the
denotation of three, is densely ordered.

(1) a. More than THREE students smoke
b. Aw. |students’,, N smoke',|>3

Following Fox (2003), F&H assume that implicatures are introduced by a covert
exhaustivity (EXH) operator. The “focus” of the alternative sensitive EXH is the numeral
three.

(2) EXH[more than three students smoke]
Given the semantics of EXH in (3), (2) is undefined.

(3)  a. [EXH]($)(d)(w) < d = MAXini($)(w)
b. MAXint(0)(w) = (1X)[(x)(w)=1 and Vy[§(y)(w)=1 — ¢(x) entails ¢(y)]

The function MAXi,s picks out the most informative of a set of degrees. The reason that
(2) is undefined is that there is no most informative degree in this case. If the domain of
measurement is dense and the number of students that smoke is greater than three,
then three is not the most informative degree. Given the density of the domain there is
some degree d between three and the number of students that smoke. It is true that
more than d students smoke, but this is not entailed by the proposition that the number
of smoking students greater than three.

In independent work, Fox (2007) proposes another way to interpret EXH. In that paper
Fox is concerned with implicatures associated with disjunction. For reasons that need
not concern us here, he finds it necessary to include each of the disjuncts among the
relevant alternatives to the disjunction.



This leads to a problem in the calculation of the implicatures of unembedded
disjunctions. Since both p and g entail pvq, if both are considered as alternatives to
pvq, then by standard scalar reasoning we derive the implicatures —-p and —q. But
these implicatures contradict the assertion. Building on previous work, notably that of
Sauerland (2005), Fox suggests that the problem can be avoided with the notion of
Innocent Exclusion. Fox proposes that an alternative to an assertion can be innocently
excluded (that is, denied) only if it is included in every way of negating as many
alternatives to the assertion as possible without contradicting the assertion. In the case
of disjunction, there are two ways of negating as many alternatives as possible that do
not contradict the assertion: {=p, =(pAq)} and {—q, =(pAq)}. Only pAq is denied in both
of these sets, so only pAq is innocently excludable.

Fox’s formulation is given in (4) below. A is the set of propositions that are alternatives
to p. I-E(p,A) is the set of innocently excludable propositions in A relative to the
assertion of p. (5) is the set of alternatives to (1)b, given that there is focus on the
numeral.

(4) a. EXH(p,A,w) < p(w) and Yq&I-E(p,A):~q(w)
b. I-E(p,A) := [{A'CA: A’ is a maximal set in A s.t. A"”"U{p} is consistent}
c. A" :={-p: pEA}

(5) The alternatives to (1)b =
{Aw. students’,,N smoke’,|>m : mE[0,)}'

Given the emphasis on consistency in the definition of the semantics of EXH in (4), it is
natural to ask whether or not it is consistent with F&H’s contradiction-based account of
(1)’s lack of an implicature. Fox (2007, 2009) refers to the EXH defined in (4) as
“contradiction free” and suggests that F&H’s account needs to be modified to
accommodate a contradiction-free EXH.

All I wish to observe in this squib is that “contradiction-free” EXH is not contradiction
free and that innocent exclusion is fully consistent with F&H’s account of (1). The
reason is simple to understand. Innocent exclusion works by intersecting certain
selected sets of alternatives. To avoid ending up with a null intersection, the sets of
alternatives are forced to be as large as possible. Hence, the definition in (4)b makes
reference to the maximal sets whose negations are consistent with the assertion.

(6) A is a maximal set in B s.t. A has p iff A has p and there is no Cs.t. CCB and ACC
and C has p.

! This is an abuse of the notation |-|. F&H’s account forces us to think of this as a real-
valued measure function. By [0,%), | mean the non-negative real numbers.



So, the proper functioning of innocent exclusion depends on the existence of such
maximal sets. However, when the set of alternatives is densely ordered there will not
be any such maximal sets. Every set of alternatives whose negation is consistent with
(1) can be expanded to a larger set whose negation is consistent with (1).

2. Proof

| offer here an informal proof that (2) is a contradiction when EXH is interpreted as in

(4).

(1) a. More than THREE students smoke
b. Aw. |students’,, N smoke',|>3

(2) EXH[more than three students smoke]

Abbreviations

Al. a, := Aw. |students’,N smoke',,|>n

A2. A :={a,:n€[0,) }

A3. maxcons(A) := {X: XCA and {a3}UX" is consistent and there is no Y s.t. YCA and
{a3}UY" is consistent and XCY}

Part I. | begin by showing that maxcons(A) is empty. The proof is by reductio. We begin
by assuming that maxcons(A) is non-empty. | show that this leads to a contradiction.?

Definitions
D1. x is a lower bound of a set S iff for all y&S5, x <y
D2. x is the greatest lower bound of a set S of real numbers (glb(S)) iff x is a lower bound
of S and for all y=x s.t. y is a lower bound of x, x > y.
D3. For any subset B of A,
glbg:= glb({m: a, € B})

Proposition
P1. Every (non-empty) set of real numbers (that has a lower bound) has a glb.

(Dedekind)

P2. Every (non-empty) subset X of A has a glby. (follows from P1 and D3)

Hypothesis
H1. Suppose for reductio that C € maxcons(A)

2 The proof makes use of the continuity of the real numbers. This is not necessary. The
proof goes through for the rationals, as well. Rather than referring to the glb, the proof
proceeds by quantifying over lower bounds. The proof with the reals is simpler.



| will now show that, if H1 is true, C has no glbc — contradicting P2; P2 entails that C has
a greatest lower bound ( glb¢ ).

Theorem
T1.3 < glbc or 3 =glbc or 3 > glb¢ [follows from property of real number line]

Case (i): glbc < 3

Case (ia): ag EC

— g, Is inconsistent with a:. &>

Case (ib) agp & C

By density, 3d[ glbc<d<3 ]
Reductio: suppose there is no x between glbc and 3s.t. x EC

But then glb¢ is not the greatest lower bound of C. ¢

Hence , there is a number e between glbcand 3s.t.e&EC
—a. is inconsistent with az. ¢

Case (ii): glbc =3
Case (iia): ag), £ C
—ag,, Is inconsistent with a;. &
Case (iib) agp, & C [This is F&H’s result]
az entails that |students’ Nsmoke’ | = n for some real n
By density, 3d[ 3<d<n ]
Reductio: Suppose there is no x between 3 and ns.t. x € C
But then 3 is not the greatest lower bound of C. &
Hence, thereis an e between 3 andns.t.e&C
But —a. contradicts |students’Msmoke’ | =n. ¢

Case (iii): glbc >3
Case (iiia): ag, £ C
By density, 3d[ 3<d<glbc ]
CU{-ag} is consistent with a3. Z (C is not maximal)
Proof: —aq4 entails every member of C
{=agq, a3} is consistent.
Case (iiib) ag, & C
CU{= ag|bc} is consistent with az. Z (C is not maximal)

So, there is no X such that X € maxcons(A), i.e., H1 is false.
Thus, maxcons(A) = &

*| use the symbol < to indicate that a contradiction has been derived.



Part Il. Having shown that maxcons(A) is empty, | now show that (2) is a contradiction.
First, given the definition of N:*

(Imaxcons(A) = (1 = the entire domain of propositions (D<s ).
The truth conditions for (2) under Fox’s (2007) theory are below:
EXH(as,A,w) < az(w) and Vq&l-E(as,A):—~q(w)
These are contradictory given that

[-E(as,A) = Des 1> and [recall I-E(a3,A) = (Ymaxconz(A)]
D« t- contains as and pairs of propositions that contradict each other.

Hence (2) is a contradiction.
QED
3. Discussion

This result shows that even if the covert exhaustivity operator EXH makes use of
innocent exclusion in its semantics, as suggested by Fox (2007), contradictions can still
be derived. For example, contradictions still arise in the cases analyzed by Fox & Hackl
(2006). In particular, whenever Innocent Exclusion EXH applies in cases like (2) and a
dense scale is assumed, the result is a contradiction. Consequently, the representation
with the optional EXH operator is discarded and an EXH-less LF is selected. This latter
LF, of course, carries no implicature — in accord with Fox & Hackl’s observation
concerning (1). This suggests that both Fox (2007) and Fox & Hackl (2006) can be
maintained in their essential details, contrary to the claim made in Fox (2009).
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ground, however, if we restrict the domain against which n-ary intersection is defined.

Thus, | take () to be an instance of a polymorphic operation of n-ary intersection,
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If F maps all members of D« > to 0, then [F is the function with domain D, that maps all
members of Dy to 1.



Fox, Danny. 2007. Free Choice Disjunction and the Theory of Scalar Implicatures. In Uli
Sauerland and Penka Stateva, editors, Presupposition and Implicature in
Compositional Semantics, pages 71-120. Palgrave Macmillan, New York, NY.

Fox, Danny. 2009. Too many alternatives: density, symmetry, and other predicaments.
In Semantics and Linguistic Theory 17.

Fox, Danny, and Martin Hackl. 2006. The universal density of measurement. Linguistics
and Philosophy 29:537-586.



